Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved.
نویسندگان
چکیده
Scaffold proteins form a framework to organize signal transduction by binding multiple partners within a signaling pathway. This shapes the output of signal responses as well as providing specificity and localization. The Membrane Associated Guanylate Kinases (MAGuKs) are scaffold proteins at cellular junctions that localize cell surface receptors and link them to downstream signaling enzymes. Scaffold proteins often contain protein-binding domains that are connected in series by disordered linkers. The tertiary structure of the folded domains is well understood, but describing the dynamic inter-domain interactions (the superteritary structure) of such multidomain proteins remains a challenge to structural biology. We used 65 distance restraints from single-molecule fluorescence resonance energy transfer (smFRET) to describe the superteritary structure of the canonical MAGuK scaffold protein PSD-95. By combining multiple fluorescence techniques, the conformational dynamics of PSD-95 could be characterized across the biologically relevant timescales for protein domain motions. Relying only on a qualitative interpretation of FRET data, we were able to distinguish stable interdomain interactions from freely orienting domains. This revealed that the five domains in PSD-95 partitioned into two independent supramodules: PDZ1-PDZ2 and PDZ3-SH3-GuK. We used our smFRET data for hybrid structural refinement to model the PDZ3-SH3-GuK supramodule and include explicit dye simulations to provide complete characterization of potential uncertainties inherent to quantitative interpretation of FRET as distance. Comparative structural analysis of synaptic MAGuK homologues showed a conservation of this supertertiary structure. Our approach represents a general solution to describing the supertertiary structure of multidomain proteins.
منابع مشابه
An Atypical MAGUK GK Target Recognition Mode Revealed by the Interaction between DLG and KIF13B.
The membrane-associated guanylate kinase (MAGUK) scaffold proteins share a signature guanylate kinase (GK) domain. Despite their diverse functional roles in cell polarity control and synaptic signaling, the currently known mode of action of MAGUK GK is via its binding to phosphorylated short peptides from target proteins. Here, we discover that the GK domain of DLG MAGUK binds to an unphosphory...
متن کاملMPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density
At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interact...
متن کاملShank Proteins Differentially Regulate Synaptic Transmission
Shank proteins, one of the principal scaffolds in the postsynaptic density (PSD) of the glutamatergic synapses, have been associated with autism spectrum disorders and neuropsychiatric diseases. However, it is not known whether different Shank family proteins have distinct functions in regulating synaptic transmission, and how they differ from other scaffold proteins in this aspect. Here, we in...
متن کاملA perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions.
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture...
متن کاملMpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse.
Membrane-associated guanylate kinase (MAGUK) proteins function as scaffold proteins contributing to cell polarity and organizing signal transducers at the neuronal synapse membrane. The MAGUK protein Mpp4 is located in the retinal outer plexiform layer (OPL) at the presynaptic plasma membrane and presynaptic vesicles of photoreceptors. Additionally, it is located at the outer limiting membrane ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 39 شماره
صفحات -
تاریخ انتشار 2012